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ABSTRACT 
The flow between eccentric rotating cylinders when either the outer or inner cylinder is stationary is 
analysed both for the creeping flow approximation and for the case when inertial effects are not negligible. 
Numerical solutions are obtained using a finite difference ADI scheme and a fine orthogonal bipolar 
coordinate grid. When the centres of the two cylinders are far enough, a two-dimensional recirculation 
zone appears in the region where the gap spacing is greatest. On increasing the eccentricity, the recirculation 
zone becomes bigger and the separation and reattachment points move towards the region of narrowest 
gap. Further increase of the eccentricity results in the formation of a saddle point between the cylinders 
at the region of narrowest gap. As the Reynolds numbers increases, inertial effects modify slightly the 
recirculation region; the separation point moves upstream and the reattachment point moves downstream 
when either the inner or the outer cylinder rotate. 
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INTRODUCTION 

The flow between eccentric rotating cylinders is one of the cases discussed by Taylor14. In 
lubrication theory, the clearance ratio (related to the radius difference between the inner and 
outer cylinders) is very small; since this parameter represents the characteristic length for this 
problem, the Reynolds number is usually much lower than 1 and inertial terms can be neglected 
safely. Early theoretical work on this problem was devoted to obtaining analytical solutions to 
the Stokes equations in a bipolar coordinate system. Wannier1, Kamal2 and others have obtained 
solutions to the biharmonic equations for the stream function. 

For the case when the outer cylinder is stationary, Kamal2 perturbed the Stokes flow solution 
to estimate inertial effects. In order to determine the criteria for the appearance of Taylor vortices 
in this geometry, he performed experiments and obtained visually that the transitional critical 
Taylor number is always above the one obtained for the concentric case and increases on 
increasing eccentricity. This latter result is in agreement with the later analysis of DiPrima and 
Stuart3 but contradicts local stability theory. The first order inertial correction of Kamal gives 
results which completely modify the streamline pattern. Ritchie4 obtained a critical Taylor 
number decrease for low eccentricities. Ballal and Rivlin5 point out that Kamal's perturbation 
analysis is erroneous, they obtain a first order inertial correction to this flow. These authors 
find that the stream lines in the inertial case are just slightly different from the ones obtained 
from the Stokes solution. 

More recently, San Andres and Szeri6 solved the fourth order stream function equation 
numerically using a Galerkin method with B-splines. Although these authors mention that they 
could not obtain accurate results at high eccentricities, they show that the rotational sense of 
the separation and reattachment points given by Ballal and Rivlin5 are erroneous in some cases. 
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One possible reason for this discrepancy is the fact that the inertial correction5 does not satisfy 
the boundary conditions6. 

When the radius ratio is not small, inertial effects cannot be neglected. This flow is a test case 
in the study of mixing; Ottino7 uses the available Stokes flow solutions to examine conditions 
which could lead to chaotic mixing of two viscous fluids, which is accomplished by time periodic 
movement of both cylinders. Today, this flow geometry is widely studied because of its 
applications both in lubrication and mixing phenomena. 

Here, the flow between eccentric rotating cylinders is studied at both low (creeping flow) and 
high (inertial flow) Reynolds numbers. A finite difference numerical solution is obtained for both 
cases and compared with the available analytical and numerical work in the literature. At large 
clearance ratios the Stokes flow solutions vary, on increasing eccentricity, in a way that has yet 
to be discussed fully in the literature. 

GOVERNING EQUATIONS 
Consider the annular region between two eccentric cylinders; apart from the radii of both 
cylinders, the angular velocities of the rotating cylinders and the fluid properties, one further 
parameter is required to specify this flow problem: the distance between the centres of the 
cylinders. The difference between this problem and the axi-symmetric case first discussed by 
Taylor8 can be resumed thus. 

For the annular space between two eccentric cylinders, different orthogonal coordinate systems 
have been used. Ritchie4, Ballal & Ritchie5, and San Andres & Szeri6 used the cylindrical bipolar 
coordinate system that is also used here. The transformation from Cartesian coordinates (x, y, z) 
to cylindrical bipolar coordinates (u, v, z) is effected by: 

The Lame coefficients are (h, h, 1) where: 

For this coordinate system, if the inner and outer cylinders correspond to the u = u1 and the 
u = u2 curves, then the following relations can be derived: 

In the above equations, ε is the eccentricity ratio and represents the distance between the two 
cylinder centres divided by their radius difference. 

The equations of motion lead, in dimensional form, to the following vorticity-stream function 
formulation: 

where U and V are the velocity components in the u and v directions respectively and are 
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calculated from the stream function definition: 

The following dimensionless variables are defined in order to normalize the governing 
equations: 

where Rn is the radius of the rotating cylinder. 
The dimensionless equations can then be written as: 

Apart from h* and ∆/2π (which are related to the geometry), the only other dimensionless 
quantity appearing above is the Reynolds number defined by: 

The boundary conditions that are applied for the case when the outer cylinder is rotating at 
constant angular velocity are in dimensionless form: 

The boundary conditions for the case when the inner cylinder turns are easily deduced from the 
above. The symmetry condition leads to: 

Before solving the above system of dimensionless equations numerically, a brief summary of the 
special case when the inertial terms can be neglected is given. 

STOKES FLOW EQUATIONS 
Analytical solution 

When the Reynolds number is much less than 1, the creeping flow equations in bipolar 
coordinates are, in dimensional form: 
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In terms of the stream function, the two above equations can be combined leading to the 
biharmonic partial differential equation: 

which is to be solved in bipolar coordinates. As mentioned before, analytical solutions have 
been reported in the literature, a brief outline of how they were obtained is given below. Applying 
separation of variables to the vorticity equation, one obtains that ω is of the form: 

where pn and qn are unknown coefficients since boundary conditions at the walls for the vorticity 
are not known. Since this problem is symmetric, the v-direction conditions which were applied 
to obtain the above form were: 

The stream function equation can be solved by first applying the transformation: 

where ф is a function of both u and v and F0 and F1 are functions of u only. Inserting the above 
forms as well as the form obtained for the vorticity into the stream function equation one can 
show that: 

F0(u) = A0 sinh u+B0 cosh u+D0u sinh u+E0u cosh u 
Fl(u) = A 1 +5 1 u+D 1 sinh2u+E1cosh 2u 

where A0, B0, D0, E0, A1, B1, D1, E1 are constants determined from the boundary conditions. 
For the case when the inner cylinder is turning at a constant velocity V, the conditions are: 

where ψ0 and ψ1 are constants to be determined. The procedure used to determine them is to 
fix the value ψ = 0 on the stationary cylinder and to require that the pressure be periodic in the 
v direction and single valued. An expression is then obtained for ψ on the moving cylinder. 

The expressions for the above constants are too lengthy to be reproduced here; however, the 
reader can refer to Wannier1, Kamal2, or Ballal and Rivlin5. 

Numerical solution 
The above dimensionless equations are solved numerically using finite differences. Figure 1 

shows a bipolar coordinate grid for R2/R1 = 3 and ε = 0.5. The computer code written to solve 
both the inertial and the Stokes flow problems solves the equations in all the domain. For the 
creeping flow case, it could be possible to draw a horizontal symmetry line cutting both cylinders 
in half. The vorticity transport equation was solved by an ADI scheme with central, second 
order differences12. The stream function equation was also solved by an ADI scheme, the 
parameter sequence given by Wachpress11 was employed. With this scheme, the user must be 
very careful in choosing the grid size. For a given radius ratio, the number of grid points in the 
u direction was chosen. As the eccentricity ratio is increased, the number of grid points in the 
v direction that will lead to convergence is seen to vary. Typical grid sizes employed are 21 x 201, 
31 x 181 and 41 x 201 for R2/R1=2, 3, and 4 respectively. Only qualitative evidence can be put 
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forward to show that the grid is fine enough. In a recent paper, Fant et al.9 studied natural 
convection between horizontal concentric cylinders, the normalized gap width ((R2 — Ri)/Ri) 
varied from 0.1 to 1. Using a 31 x 101 grid for half the annular region they showed the appearance 
of multicellular flows at high Rayleigh numbers. Previous calculations with a coarser grid had 
been unable to show this result. Even though this problem is different from the one considered 
here, there is a mathematical analogy between them (see Drazin and Reid10). For example, 
linear stability theory leads to the same equations in Cartesian coordinates. 

When the inertial flow equations are solved, a small Reynolds number (Re=5) is first solved. 
The obtained results are then used as starting point for the next value of Re; this procedure 
helps in reducing CPU time. The program stops when the two convergence tests have been 
successfully passed. The difference between calculated values of the stream function at all the 
grid points in both walls must not exceed 10-7 in relative value. Finally the vorticity everywhere 
must be constant from one step to the next, a 10 -5 −10 -7 relative error was tolerated depending 
on the Reynolds number. The numerical scheme was discussed in Saatdjian et al.13. All the 
boundary conditions are satisfied by this numerical scheme. It should be noted that a value of 
the stream function (for example ψ = 0 was not chosen for the stationary cylinder because it 
does not automatically ensure that V = 0 on that wall). 

The accuracy of this numerical scheme does not depend on the system geometry, an advantage 
over the one used by San Andres and Szeri6 who employed a B-spline Galerkin method. These 
authors state that for high eccentricity ratios the number of required terms in their series 
development was too big for their computer to handle. Here, only the total number of steps 
necessary for convergence increases when either the eccentricity ratio or the Reynolds number 
is increased. 

RESULTS FOR STOKES FLOW 
The Stokes flow solutions when either the inner or outer cylinder turns are first discussed. 
Although this may seem as a trivial matter due to the availability of analytical solutions, the 
author has not yet found a full discussion of the flow patterns in the literature. The reason may 
be that in lubrication, only small clearance ratios and eccentricities are of practical interest. 

Consider the case when the outer cylinder turns at constant velocity, the radius ratio is equal 
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to 2. For low eccentricity ratio, the stream lines are almost circular and no recirculation zone 
exists; this is shown in Figure 2a for ε = 0.5. above a certain value of ε (the value is a function 
of the clearance ratio), a recirculation zone appears in the flow. The streamline which separates 
the two-dimensional zone from the rest of the flow is the ψ = 0 streamline. A typical case is 
shown in Figure 2b where ε = 0.7. The two points where the ψ = 0 streamline intersects the inner 
cylinder are called the separation and reattachment points. Further increase of ε leads to a 
radical change in the flow pattern. For ε = 0.75 (Figure 2c) the two-dimensional zone becomes 
much bigger and both the separation and reattachment points move, symmetrically, towards 
the back of the inner cylinder. 

If ε is increased even further, as shown in Figure 2d and 2e where ε = 0.8 and 0.9 respectively, 
a saddle point is obtained in the region where the gap is narrowest and only a very small layer 
of fluid turns in the same direction as the outer cylinder. Saddle points have been discussed by 
Ottimo7 and Ballal and Rivlin5 for this flow when both cylinders turn in opposite directions. 
The striking phenomenon at first occurring in these last two Figures is that although the outer 
cylinder is turning in one direction, the net flow is in the opposite direction. The above variation 
of the flow pattern on increasing ε has also been observed for R2/Ri = 3 although the transitions 
occur at different values of the eccentricity ratio. 

When the inner cylinder turns, a two-dimensional recirculation zone appears on the outer 
cylinder at a lower value of ε. This is shown in Figure 3a for the same radius ratio (R2/Ri = 2) 
as before and for ε = 0.5. Again, the ψ = 0 streamline separates the two flow regions. As Ε is 
increased, the separation and reattachment points move towards the region of narrowest gap 
and the recirculation zone becomes bigger. This is shown in Figure 3b and 3c where ε = 0.7 and 
0.75 respectively. Further increase of ε leads to a saddle point in the region of minimum clearance 
as shown in Figure 3d and 3e where ε = 0.8 and 0.9 respectively. As in the case when the outer 
cylinder rotates discussed above, the net flow in Figure 2d and 2e is in a direction opposite to 
the one of the cylinder rotation. Again, a similar behaviour is observed for other radius ratios. 

The above Stokes flow results differ from those obtained by Ballal and Rivlin5 in some cases 
but not all. For example, for the case of rotating inner cylinder, the streamline pattern for ε = 0.5 
is identical in both cases. However, at lower or higher values of ε the results do not match. 
When the inner cylinder rotates, the value of ε for which a two-dimensional zone appears at 
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R2/R1 =2 is slightly less than 0.2. This result is in agreement with the numerical calculations of 
San Andres and Szeri6 but is lower than the value obtained using the analytical solution5. This 
discrepancy could be due to the analytical calculation of the value of ψ at the moving wall. 

The above comments apply also to the case when the outer cylinder rotates. The value of 
ε obtained here, for a vortex zone to appear is 0.53 instead of 0.27. Again the value given by 
Reference 5 could be questioned because it is lower than that for the case when the inner cylinder 
rotates. In the concentric case, it is well known that a rotating inner cylinder is less stable than 
a rotating outer cylinder; Taylor vortices appear at a lower value of the Reynolds number. 

In all the above numerical calculations, a 107 relative error on both the stream function and 
the vorticity was obtained. The calculations required approximately 1500 time steps and about 
15 min CPU time on a RISC 6000 workstation. 
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INERTIAL EFFECTS 
The influence of inertia on this flow is analysed by solving the full Navier-Stokes equations 
given above. The CPU time necessary to obtain results for given geometry and Reynolds number 
increases drastically; a typical run, for the same convergence criteria as before requires about 
5 hours on the same computer. The grid sizes used are the same as before and depend on the 
considered radius and eccentricity ratios. The Reynolds numbers considered below are below 
the critical value leading to a three dimensional flow similar to the toroidal vortices observed 
by Taylor8. 
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When inertial effects are taken into account, the flow pattern is no longer symmetrical and 
the centre of the two-dimensional zone moves in the direction of the cylinder displacement. This 
is shown in Figure 4 where streamlines for both Stokes and inertial flow (Re = 20) are shown. 
The geometrical parameters are R2/R1 = ε and ε = 0.7, and the outer cylinder is turning at 
constant velocity. The separation point moves upstream and the reattachment point moves 
downstream, as shown in Figure 4. This result is in contradiction with both the inertial correction 
of Ballal and Rivlin5 and with the numerical calculations of San Andres and Szeri6. San Andres 
and Szeri6 state that the inertial correction5 does not satisfy the correct boundary conditions. 
San Andres and Szeri also state in their paper that their numerical code breaks down at high 
eccentricity although they do not give an exact value of ε. 
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Figure 5 shows a similar comparison for R2/R1 = 3, ε = 0.6 and the inner cylinder turning. 
The solution for Re = 20 shows that inertial effects tend to stretch the size of the two-dimensional 
vortex zone. 

CONCLUSIONS 
The flow between eccentric rotating cylinders has been solved numerically both for low and 
high Reynolds numbers. The finite difference scheme used on grids containing approximately 
5000 points has been tested against an available analytical solution for the creeping flow case. 
The finite difference code developed allows the user to treat all geometries; this is particularly 
important in mixing where high clearance and eccentricity ratios are common. The flow regime 
is seen to change dramatically on increasing the eccentricity ratio and saddle points can be 
present when only one cylinder turns. For a given geometry, an increase of the turning cylinder 
velocity is seen to lead to a stretching of the two-dimensional region. 
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